A New Scaling for Newton's Iteration for the Polar Decomposition and its Backward Stability

نویسندگان

  • Ralph Byers
  • Hongguo Xu
چکیده

We propose a scaling scheme for Newton’s iteration for calculating the polar decomposition. The scaling factors are generated by a simple scalar iteration in which the initial value depends only on estimates of the extreme singular values of the original matrix, which can for example be the Frobenius norms of the matrix and its inverse. In exact arithmetic, for matrices with condition number no greater than 1016, with this scaling scheme, no more than 9 iterations are needed for convergence to the unitary polar factor with a convergence tolerance roughly equal to 10−16. It is proved that if matrix inverses computed in finite precision arithmetic satisfy a backward-forward error model then the numerical method is backward stable. It is also proved that Newton’s method with Higham’s scaling or with Frobenius norm scaling is backward stable.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Backward Stability of Iterations for Computing the Polar Decomposition

Among the many iterations available for computing the polar decomposition the most practically useful are the scaled Newton iteration and the recently proposed dynamically weighted Halley iteration. Effective ways to scale these and other iterations are known, but their numerical stability is much less well understood. In this work we show that a general iteration Xk+1 = f(Xk) for computing the...

متن کامل

A Parallel Algorithm for Computing the Polar Decomposition

The polar decomposition A = UH of a rectangular matrix A, where U is unitary and H is Hermitian positive semidefinite, is an important tool in various applications, including aerospace computations, factor analysis and signal processing. We consider a pth order iteration for computing U that involves p independent matrix inversions per step and which is hence very amenable to parallel computati...

متن کامل

A STABLE COUPLED NEWTON'S ITERATION FOR THE MATRIX INVERSE $P$-TH ROOT

The computation of the inverse roots of matrices arises in evaluating non-symmetriceigenvalue problems, solving nonlinear matrix equations, computing some matrixfunctions, control theory and several other areas of applications. It is possible toapproximate the matrix inverse pth roots by exploiting a specialized version of New-ton's method, but previous researchers have mentioned that some iter...

متن کامل

A Refined Polar Decomposition: A=UPD

A reenement of the polar decomposition of a nonsingular matrix A is considered. Here A is written as a product of unitary U ; Hermitian and positive deenite P which has unit diagonal, and diagonal positive D : It is shown that such a decomposion exists and is unique. Rectangular and singular cases are also considered. Then a simple xed point iteration using SVD is given to compute this decompos...

متن کامل

Finding the polar decomposition of a matrix by an efficient iterative method

Theobjective in this paper to study and present a new iterative method possessing high convergence order for calculating the polar decompostion of a matrix. To do this, it is shown that the new scheme is convergent and has high convergence. The analytical results are upheld via numerical simulations and comparisons.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2008